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| ecture Overview

* (atalytic motors
* Using cells as actuators
* Protein and DNA machines




Proteins as Building Blocks
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Computational design of protein machines [video]

* Mechanically constrained axle-rotos assemblies from designed axles and rotors
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Computational design of protein machines

* Mechanically constrained axle-rotos assemblies from designed axles and rotors




DNA Origami
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DNA Origami
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DNA Origami motor

Rotor dock
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DNA Origami motor
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DNA Origami turbine
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Nucleic Acids as Building Blocks

Spring-loaded device ([mousetrap): proper combination of antigen keys (AND gate]
Guide staples that can be removed after folding (hands setting the trap]

locked

unlocked

guide staples
with toeholds
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20 nm



DNA nanorobot as cancer therapeutic

* Transport payload and specifically present in tumors
* Responds to nuclealin, a protein specifically expressed on tumor-associated cells
* Delivery of thrombin for coagulation at the tumor site
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B)

Catalytic Boat

* First demonstration of autonomous (self]) propulsion of small
machines using catalytic reactions (2002

* Asymmetric placement of platinum on millimeter-sized elastomer

structures

* Pt catalyzes decomposition of hydrogen peroxide to water and oxygen
gas led to a jet of bubbles, which propels the object
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Chemically-driven nanorotor

* First demonstration of propulsion of nanomachine using catalytic
reactions (2003)

Tum

catalyst

LE H202 — H20+02(g)
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Janus grains/ particles

* Roman god Janus with two faces
* Deposition of metallic thin films on microbeads

Sputter Coating

Pt
Cr
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Bubble propulsion

* (Concentrated oxygen coalesces to form bubbles on the catalyst surface
* Dissolved oxygen continues to diffuse into the bubble causing it to grow

* Bubble grows until reaching the detachment radius and released from
the surface

e Detachment results in momentum transfer

* Reaction force caused by the bubble detachment will be balanced by the
viscous drag force
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Bubble propulsion
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Bubble propulsion
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Tubular Microjets: Propulsion Mechanism

The fuel solution wets the catalytic material containing energetically

favorable nucleation points
— 0, accumulates and grows as bubbles at these points

Bubbles migrate towards one opening of the tube

— Larger opening

Bubbles are released

Tube
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Tubular Microjets: Bubble Size

Bubble size vs hydrogen peroxide concentration

Bubble size decreases with increasing frequency
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Tubular Microjets: Bubble Size

* Moving step vs bubble size: linear curve
* At small bubble size, the average moving step is equal to the radius
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Tubular Microjets: Geometry

« Dynamics is affected by the geometry A
* Shape of the opening
* Cylinders vs cones

B
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Hydrodynamics

* 3 phases: nucleation, bubble deformation inside the cone, and bubble exit
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Hydrodynamics

* 3 phases: nucleation, bubble deformation inside the cone, and bubble exit

0.02
(b)

0.01
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Hydrodynamics

* (Cone angle

* Non-monotonic effect: related to the first two phases

6 =0.25°

0=1°

O

-
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— O
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Hydrodynamics

* Capillary number

* With increasing Ca, the bubble inflates more rapidly
— Bubble cycle is shorter and cone displacement is larger

— Average velocity scales linearly

Ca = 0.001

Ca = 0.01




Compartmentalized Rocket Microengines

* Entrapping Pt nanoparticles inside the cavity of a polymer capsule
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Compartmentalized Rocket Microengines

* Entrapping Pt nanoparticles inside the cavity of a polymer capsule

b < ® d -

100 nm
—

1 |® with H,0,
1 | W Without H,0, o
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Compartmentalized Rocket Microengines

* Speed regulation using thermoresponsive materials
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Size (nm)

Compartmentalized Rocket Microengines

Speed regulation using thermoresponsive materials
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3D Printing of Rocket Microengines

Multi-material direct laser writing

a b Precursor PEGDA solution
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3D Printing of Rocket Microengines

* (Crosslinking of a nanocomposite with Pt nanoparticles
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3D Printing of Rocket Microengines
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Three-dimensional chemical patterning
of micromaterials for encoded
functionality
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External control of orientation

* Magnetic [deposition of magnetic materials), acoustic, electrical,
optical, and thermal control

Light Off Light On

LA
S

Microengine On Microengine Off

P_: 37°C m“
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Phototaxis

* Light-driven photoelectrochemical reaction generates anions and
cations at opposite ends of the structure

— Asymmetric distribution of ions
— Self-electrophoresis
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Phototaxis

* QOrientation control with light




Phototaxis

* Schooling of microswimmers

Pristine
0 min 2 min J 5 min

8 min 11 min 15 min
) 1 J \ J | ’J “
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Catalytic artificial muscle
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Catalytic artificial muscle

~
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Catalytic artificial muscle
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Catalytic artificial muscle
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Soft combustion actuators

A Elastomer
membrane

Flame
arrestor
Membrane
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Spark gap
Exhaust m
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Reactant gas

O
o © (CH,and 0, (Rear)

Combustion
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@ Actuation
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% 4 Product gas
(CO, and H,O)
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Soft combustion actuators

Powerful, soft combustion actuators for insect-scale robots

Movie S1: Operation of the microcombustion actuator

Cameron A. Aubin, Ronald H. Heisser, Ofek Peretz, Julia Timko, Jacqueline Lo,
E. Farrell Helbling, Sadaf Sobhani, Amir D. Gat, Robert F. Shepherd
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Soft combustion actuators

C ¢ =045 f=10Hz
;_ ,—\-—r ,:-—— ,j—— .-:- ,“’” ,_

0.13 ms 0.20ms ; ; ; 0.47 ms

f=10Hz Increasing CH4 concentration

Unactuated ¢ =0.24

46



Soft combustion actuators

Powerful, soft combustion actuators for insect-scale robots

Movie S2: Robot jumping - max height

Cameron A. Aubin, Ronald H. Heisser, Ofek Peretz, Julia Timko, Jacqueline Lo,
E. Farrell Helbling, Sadaf Sobhani, Amir D. Gat, Robert F. Shepherd
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Soft combustion actuators

Powerful, soft combustion actuators for insect-scale robots

Movie S6: Rotational control of robot

Cameron A. Aubin, Ronald H. Heisser, Ofek Peretz, Julia Timko, Jacqueline Lo,
E. Farrell Helbling, Sadaf Sobhani, Amir D. Gat, Robert F. Shepherd
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Printable protein muscles

* Engineered kinesin and microtubules
* UV polymerization
* pN range
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Printable protein muscles




Printable protein muscles

PEGDA prepolymer introduced

\/
&

8
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Printable protein muscles

15! fabrication process




Printable protein muscles
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Printable protein muscles
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Protein fuel for Marangoni boats

e Squid-derived proteins [SRT) and a metabolite (HFIP)
* Surface tension gradients

a Protein source SRT protein Motor solution Protein casting _ Laser Protein motor
(natural/biosynthetic) (extraction/synthesis) micromachining
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Protein fuel for Marangoni boats

.-:"0 ) Intelllgent Systems Physuul Intelligence

oY Department

Supplementary Movie S2

Locomotion of protein motors

MULTIFUNCTIONAL AND BIODEGRADABLE SELF-PROPELLED PROTEIN MOTORS

Abdon Pena-Francesch, Joshua Giltinan, Metin Sitti




Protein fuel for Marangoni boats

: ° o
Max Planck Institute for . 0 .'

2
.‘ Physical Intelligence
Department

Supplementary Movie S4

Cargo delivery via biodegradation

MULTIFUNCTIONAL AND BIODEGRADABLE SELF-PROPELLED PROTEIN MOTORS

Abdon Pena-Francesch, Joshua Giltinan, Metin Sitti




Protein fuel for Marangoni boats

’, Max P!ancl:lnstitutefor ...: A
o IntelllgentSystems K !o' Physical Intelligence

5 Tk Department

Supplementary Movie S5

Modular motors

MULTIFUNCTIONAL AND BIODEGRADABLE SELF-PROPELLED PROTEIN MOTORS

Abdon Pena-Francesch, Joshua Giltinan, Metin Sitti




Homeostatic Devices

* Physics Pt-catalysed H,O, decomposition
Off On
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Homeostatic Devices

a System cools
1o T<LCST
I'>LGCST: Microstructure up I'<LCST.
C off, heat dissipation C on, heat generation
Feedback loop: Products + heat
Reagents
Catalyst ez ' ' '
H.O % Ky |
2 ,—. ’l J/ 6\96’\’ “ @,)0 Temperature_

\ responsive hydrogel

System heats
toT > LCST

Microstructure bent
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Biological Actuators

* Sensing-computation-actuation seems to be impossible to reach at
microscale

* Microorganisms and immune cells already access everywhere in the
body

* \We can engineer cells thanks to genetic engineering
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|deal Prototype

a Robot factory b Bacterial cell
Attractor molecule —

Tumour Environmental Flagellum Chemotactic receptor
7~ targeting | sensor

Propeller

P

Externall Reporter
detectab)Ie signal @ Cytotoxic protein for m @ 8— Molecular &
molecule visualization ol signal ’—&
Anticancer
protein
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Galvanotactic Control of Ciliate Protozoa

Paramecium caudatum
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Magnetotactic Bacteria (video]

Synthesis in anaeraobic conditions

Sensors (Chemotaxis and Aerotaxis) 0.5pm

Nutrients-to-Protons (Fuel)  Propulsion Engines
Converter \ < 30 nm Overall Size M. magnetotacticum
SR g B 34 i
'y ( ' M. magneticum, MV-1 Fe“*-siderophore complex

2 4 pN Thrust Force)

Steering Wheel Propellers (Flagella)

(Magnetotaxis)

M. gryphiswaldense
(no evidence for

siderophore

involvement)

Fe2+:nitrite | | Cytoplasmic
oxidoreductase | | Fe3* reductase
(M. magnetotacticum)

Periplasmic
Fe2+
oxidase

Cytoplasmic
membrane

Periplasm

Magnetosome

Outer
membrane

Fe3* + reducing reagent + H.0 — Fe®* + oxidized product + H*

Magnetosome chain
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Phototaxis to Steer Chlamydomonas reinhardtii

Photoshock
—response
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Logic Gates and Circuits

Electronics
Reset—set latch

Switch

LC oscillator circuit

= L
g C %
6
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O =-->
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AND gate
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O --»
Arabinose

Synthetic biology
Genetic toggle switch

Heat
L
] G G|
= [Ptrc2]
T

IPTG

Repressilator
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Quorum Sensing

Produce and release an auto-inducer [AHL)]
Bacteria regulate virulence, competence, antibiotic production, matility,
biofilm formation etc. using quorum sensing
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A synchronized quorum of genetic clocks

b e T~ Cc 80
LuxR-AHL _ |CEhR r T
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Selective protein expression within tumors

* Salmonella is engineered to produce anticancer proteins only in tightly

packed colonies

* Lux quorum sensing system from Vibrio fischers
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synchronized cycles of bacterial lysis for in vivo delivery

Quorum threshold Synchronized lysis

.-.’_'-7\\. - SR
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Electrical communication In bacterial communities

a Metabolic oscillations Bacillus subtilis biofilm

SsaJ3s dljogeliy
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Motor powered by Mycoplasma

L_IRotor

M. mobile cells®,

30.0kV X4.080K 7.50rm
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Bacterial ratchet motors

73



Techniques for Engaging with Cargo
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Liposomes for drug delivery

20kV 4.8 mm x30.0 k SE(U)

20kV 4.8 mm x30.0 k SEQU)
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Liposomes for drug delivery
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Bacterial Carpets
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Blotting Swarming Bacteria

(d)

P &
P L
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Biological Soft Robot (video]

Sarcomere Biological soft robot

2D muscle }

Actin-myosin
motors

*

| | T T T T T |
10°° {0 m 10”7 1072 (17 23 162 1073 1072

Multiscale molecular motor assembly (m)
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A Case Study: Muscular Thin Films
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Tissue-engineered Soft Robotic Ray

MUSCULAR SEQUENTIAL ACTIVATION VIA SERPENTINE PATTERNED CIRCUITS
without serpentine intermediate serpentine dense serpentine . E
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Tissue-engineered Soft Robotic Ray
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Engineered Skeletal Muscle Bioactuators
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Electronic control of muscle-driven robots

/A Design of biohybrid electronics robot (eBiobot) N
Wireless . . eBiobot
, Biological
Optogenetic Scaffold remote-controlled _
device Actuator illuminations J = I
muscle
2 N 2 actuation
locomotion
- A
(B Wireless Optoelectronicg (c Computational Design\ (D Bio-fabrication h
optimization parameters || i) : i -y optogenetic
laptop beam thickness Cell+ECM 8D printed PEGDA Sy device on

skeleton

eBiobot inside
antenna cage

fibrin gel

; front
leg length mismatch ; ;
Matrigel® |
i) Computational Model leg length (|; "S> :
i) Optimization Course [ﬁd: F"aCtl'”'”
initial parameters gptlmalt PR
DG arameters
N optmizery /.
||! (cMA-ES) " generation !

performance

s e

..............

characterized muscle

Fabrication of eBiobot ‘ Re-design based on characterized performance ,




Electronic control of muscle-driven robots
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Electronic control of muscle-driven robots
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Electronic control of muscle-driven robots
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Electronic control of muscle-driven robots




